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Overview

 General structure of conventional ASR
e Introduction of Gaussian mixture models
* |ntroduction of HMM

* HMM algorithm

Workflow of GMM-HMM in ASR

* Context-dependent phone models



General structure of
conventional ASR
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General structure of conventional asr

W* = arg max P(W | X)

The Bayes theory:
X|W) P(W)

p(X)
x p(X|W) P(W)
W* = arg max p(X|W) P(W)

P(W|x) = P!

Acoustic Language
model model



Hierarchical modelling of speech

Generative Model y r““{A Utterance

NO RIGHT Word
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Introduction of Gaussian
mixture models
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Calculation of marginal prob P(X[W)

P(X.|/s/) is modeled by emission prob (Generally is Gaussian distribution to fit)

Extreme Case: each state

P(X|/sayonara/) = P(X1|/s/) P(X; [/a/)......P(Xg | /a/) is independent and fixed

83 In general case where a phone lasts more than one frame and
model parameters change over time, we need to employ HMM

A single Gaussian distribution function for example: (2 params: p and o)
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Parameters estimation of GMM

Ptm)thlw)., E lm)N(m o 5 {ML)
]

3’ NI
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* When we know which component generated the data
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Parameters estimation of GMM

M M .
Pay= S Py Prstea) = 2 Forn N (35 s 6 )
mz=| mo

» Two conditions (EM)
e When we don’t know which component generated the data

Idea: use the posterior probability P(m|x), which gives the
probability that component m was responsible for generating
data point x.

p(x|m)P(m) _ p(x| m) P(m)
p(x) Sy P(X| m")P(m)

The P(m|x)s are called the component occupation
probabilities (or sometimes called the responsibilities)

P(m|x) =

Since they are posterior probabilities:

Zhj:P(m|x) =1



MLE for Params estimation

For a fixed training set X, the negative log of likelihood prob can be
used as loss to optimize

£ =TT p(x:) = [I > plxe| m) P(m)

t=1 t=1 m=1

Another method EM will be discussed later



Introduction of HMM

%/ WER¥HK
ikl



Acoustic Model: Continuous Density HMM

Generally bj(x) is fit by
Gaussian mixture models
with M components

X1 X2 X3 X4 X5 X6

Probabilistic finite state automaton  bj(x) = p(x|S=j) = ZMjcij(x;ujm,Ej )
Parameters A: o "
o Transition probabilities: ay; = P(S=j|S=k)
o Output probability density function: b;j(x) = p(x|S=))



HMM Assumptions

» Markov process: The present state’s prob only depends on the
previous state

» Short time stationary process: each acoustic segment can be viewed
as a Short time stationary process which allowed to fit with GMM

» Observation independence: The output observation depends only
on the state that produced the observation



HMM algorithm

%/ WER¥HK
ikl



HMM algorithm

Three problems

» Likelihood: The likelihood of X with a fixed HMM

» Decoding: Given an observation sequence and an HMM, determine
the most probable hidden state sequence

» Training: Given observation sequence and an HMM, learn the best
params A={{ax}, {bj}}



Likelihood
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Forward/backward algorithm Viterbi algorithm



Likelihood: Forward algorithm

Compute the probability recursively
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Viterbi algorithm is
different in
recursive step,
which need to
save the previous
state to backtrace.



Decoding: Viterbi algorithm
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Training: Baum-Welch algorithm

Goal: Efficiently estimate the parameters of an HMM A from an observation sequence

Approaches: Viterbi algorithm as approximation and BW algorithm(EM) for all paths
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Training: Baum-Welch algorithm
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Training: Baum-Welch algorithm

M-step: Re-estimation of HMM

@ Similarly to the state occupation probability, we can estimate
£:( 7, J), the probability of being in /i at time t and j at
t + 1, given the observations:

gt(ivj) — P(S(t):i,S(t+1):j|X,)\)
p(S(t)=i,5(t+1)=j, X[A)
P(X[A)
_ ae( i )aijbj(Xe41)Ber1(J)
aT(SE)

@ We can use this to re-estimate the transition probabilities

5= i &elis )
' ZkN:12tT:1£t(ivk)




Workflow of GMM-HMM in
ASR
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Workflow of GMM-HMM in ASR

Phone-tying:
Phone
decision tree

DEICE Feature- Mono-phone Il Tri-phone

preprocessing extraction GMM-HMM GMM-HMM Decoding

|
|
|
|
\VJ

Initialize
alignment

Multi-step workflow of ASR

algorithm



Mono-phone GMM-HMM
e 1 8 R (530

» Initialize alignment: k-means for GMM ;@@_@

»EM algorithm: compute a;; and b;

]GMM] (M|

» Align again: Baum-Welch and Viterbi

Soft-alignment Hard-alignment

v Repeat 2 and 3 until convergence



Context-dependent phone
models
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Context-dependent phone models

The need to model phonetic context

» Context: The acoustic phonetic context of a speech unit has an
effect on its acoustic realization

» Coarticulation: The place of articulation for one speech sound
depends on a neighboring speech sound

Consider /n/ in ten and tenth

e alveolar in ten
e dental in tenth



Context-dependent phone models

» Triphone: Represent a phone x with left context | and right context r
as |-x+r

» Word-internal triphone: Only take account of context within words

» Cross-word triphone: Don’t ask: “sil sil-d+oh d-oh+n oh-n+t n-t+a ...”

Problem: Unseen data, Too more params, Data sparse

Solution: Smoothing, Parameter sharing



CD-phone models: Parameter sharing

Core idea: Explicitly share models or parameters between different contexts
* Enable training data to be shared between the models
* Enable models to share parameters

© Sharing Gaussians: all distributions share the same set of
Gaussians but have different mixture weights (tied mixtures)

@ Sharing states: allow different models to share the same
states (state clustering)

© Sharing models: merge those context-dependent models that
are the most similar (generalised triphones)



CD-phone models: State clustering

s-iy+| feiy+| t-iy+n t-iy+m ata are shared
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. (tree-based
Simple triphones (no sharing) (

s-iy+l f-iy+l t-iy+n t-iy+m

_____________

State-clustered triphones (state sharing)



Phonetic Decision Trees: Top-down clustering

Input: a) mono-phone system and definite observation sequence for each state of
mono-phone by Viterbi algorithm; b) a question set

Goal: extend mono-phone to triphone for state-tying , build a decision tree for each
state of each triphone

Output: Triphone GMM-HMM system with decision trees



Phonetic Decision Trees: Building Steps

Step 1: Mono-phone alignment to Triphone alignment (3 states)
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Phonetic Decision Trees: Building Steps

Step 2: Build binary decision tree based on the question set

*  TRLMZE:

—

L . 1
L(S;) + L(S,) = —;m;\( + log(27m)) — —) my Zlog (7“ + m, Zlon ,A

-—

o LAY % (Likelihood gain)
= L(Sﬂ) + L(Srl) — L(S)

o i g*

* The root node is one state of
qg* = ar gm]n [m, Z log( (7,,\ + my Z log(o A)] :
. o triphone | |
: . * Select the optimal question that
” " 5 . : .
o, = — Z zr — — ( Z 1) divide corresponding observation
(L B4 My s samples
a2 1 Z 5 1 (Z )2 * Endue dlfferent probs of other
k= kT s Ly Rl unseen triphone



Phonetic Decision Trees: Building Steps

Step 3: Repeat step 2 until convergence

Third States
of *-zh+*

Stop criterion:
1. The number of leaves nodes exceed a fixed

number;
2. The likelihood gain is below than the

threshold uw-zher uw-zh

uw-zh+ax ah- zh
uw-zh+aa

ow- zh er ow- zh ih aa-zh+ao aa- zh ax
ow-zh+ax ih-zh+ao eh-zh+ax



Inference process

» Given observation sequence X with the trained triphone GMM-HMM
acoustic models, we can get marginal prob of each triphone in
phonetic decision tree’s leaves.

»Then we can decoding with LM to achieve the conventional structure



Inference process

WEST: HCLG for decoding

transducer

Input sequence

output sequence

word-level grammar
pronunciation lexicon

context-dependency
HMM

LM score AM score

Training order: G->L->C->H

O o

words

phones
CD phones

HMM states

words
words

phones
CD phones

HCLG = asl(min(rds(det(H' o min(det(C o min(det(Lo G))))))))



Inference process

WEST: HCLG for decoding

G is generated from statistic, L is the lexicon in
generating G, C generated from context-dependent
phone decision tree based on L

» Lattice is used to save N-best in decoding

» Viterbi or beam search to get results
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